
Index
1 Counting numbers 2
2 Exponents 51
3 Geometry of straight lines 56
4 Constructions 57
5 Geometry of 2D shapes 60
6 Common fractions 66
7 Decimal fractions 85
8 Functions and relationships 94
9 Area and perimeter of 2D shapes 96
10 Surface area and volume of 3D objects 105
11 Numerical and geometrical patterns 112
12 Algebraic expressions 118
13 Algebraic equations 123
14 Graphs 127
15 Transformation geometry 130
16 Geometry of 3D objects 137
17 Integers 147
18 Collect, organize, and summarize data 151
19 Represent data 155
20 Interpret, analyse, and report data 159
21 Probability 162
22 Calculator 165

CHAPTER 1: COUNTING NUMBERS
READ NUMBERS

Example
136131628
One hundred and thirty-six million one hundred and thirty-one thousand six hundred and twenty-eight

WRITE NUMBERS
Group in groups of 3 :

Example
Write 246552698 in words:
Two hundred and forty-six million, five hundred and fiftytwo thousand, six hundred and ninety-eight

Example
Write 56000000,708 in words:
Fifty-six million, comma seven zero eight

CHAPTER 2: EXPONENTS

EXPONENTS
5^{4}
The number 5 is multiplied by itself 4 times:

$$
5^{4}=5 \times 5 \times 5 \times 5=625
$$

Squares

$$
\begin{aligned}
& 0^{2}=0 \times 0=0 \\
& 1^{2}=1 \times 1=1 \\
& 2^{2}=2 \times 2=4 \\
& 3^{2}=3 \times 3=9 \\
& 4^{2}=4 \times 4=16 \\
& 5^{2}=5 \times 5=25 \\
& 6^{2}=6 \times 6=36 \\
& 7^{2}=7 \times 7=49 \\
& 8^{2}=8 \times 8=64 \\
& 9^{2}=9 \times 9=81 \\
& 10^{2}=10 \times 10=100 \\
& 11^{2}=11 \times 11=121 \\
& 12^{2}=12 \times 12=144
\end{aligned}
$$

Example
Write in exponential form:

$$
7 \times 7 \times 7 \times 7 \times 7=7^{5}
$$

CHAPTER 3: GEOMETRY OF STRAIGHT LINES

LINES

Line

PERPENDICULAR AND PARALLEL LINES

Sketch	Name	Remember
	Lines are parallel when they are the same distance from each other at any	
Parallel lines. to's like the		
point.		
road. The road cant		
get smaller, cars will		
crash.		

CHAPTER 4: CONSTRUCTIONS

CLASSIFY ANGLES

sketch	Name	Remember
	acute angle	it has an acute angle is sharp and can sting!
	obtuse angle	this angle is obtuse and cannot sting.
	right angle	it's a right angle, just like in your home.
\bigcirc	extended angle	like open extended arms.
	indented angle	jump into the indented pool!
	revolution	all the way round.

CHAPTER 5: GEOMETRY OF 2D SHAPES
TRIANGLES
Classify according to angles

1. Acute angled triangle - all the angles are acute.
2. Right angled triangle - one right angle.
3. Obtuse angled triangle - one obtuse angle.

Classify according to sides

There are different types of triangles:

1. Equilateral triangle - all the sides are the same length
2. Isosceles triangle - two sides are the same length
3. Scalene triangle - all the sides are different lengths

CHAPTER 6: COMMON FRACTIONS
COMMON FRACTIONS

Smaller than (<) or greater than ($>$)
A smaller than sign has two sides. A small point (at the hippo's little ear) at one side and a large hippo's mouth on the other side. The large mouth bites the biggest number. The small ear shows to the small number.
smaller than
 greater than

Example
Multiply the bottom and the top with the same number to get the bottoms the same. Now see which one is the biggest.

$\frac{1}{2}$	$>$	$\frac{1}{4}$
$\frac{2}{4}$	$>$	$\frac{1}{4}$

CHAPTER 7: DECIMAL FRACTIONS

FRACTIONS TO DECIMALS
The bottom of the fraction must change to 10,100 or 1000. With what do you need to multiply to get 10 , 100 or 1000 at the bottom. Now multiply the top with the same number. When the number is on 10 is, there must be ONE digit after the comma, on 100 there must be TWO digits after the comma and on 1000 there must be THREE digits after the comma.

Example

$$
\frac{1}{2} \times \frac{5}{5}=\frac{5}{10}=0,5
$$

Example

$$
\frac{2}{5} \times \frac{2}{2}=\frac{4}{10}=0,4
$$

Example
$\frac{8}{25} \times \frac{4}{4}=\frac{32}{100}=0,32$

$$
\frac{9}{20} \times \frac{5}{5}=\frac{45}{100}=0,45
$$

Example

Example

$$
\frac{1}{125} \times \frac{8}{8}=\frac{8}{1000}=0,008
$$

CHAPTER 8: FUNCTIONS AND RELATIONSHIPS

FLOW DIAGRAMS
To go right, follow instructions normally.
Example

Input
2121
3131
4141
5151

Rule		
+3		$\times 2$

Output
4248
6268
8288 10308

To go left (back), do the opposite.
Example

Input
6161
7171
8181
9191

Rule

Output
12328
14348
16368
18388

CHAPTER 9: AREA AND PERIMETER OF 2D SHAPES

PERIMETER
Perimeter is the distance around a shape. Imagine the shape is a farm. How many fences do you need to put up? You must put up a fence all the way round your farm, otherwise the sheep will run away.

Example

$$
\begin{aligned}
\text { Perimeter } & =4 \mathrm{~cm}+5 \mathrm{~cm}+4 \mathrm{~cm}+5 \mathrm{~cm} \\
& =18 \mathrm{~cm}
\end{aligned}
$$

Example

CHAPTER 10: VOLUME AND SURFACE AREA

VOLUME
Volume means how many blocks can fit into a 3D shape.

length $=5 \mathrm{~cm}$

Count or the blocks or calculate as following:
Volume $=$ length \times breadth \times height

$$
\begin{aligned}
& =5 \times 4 \times 3 \\
& =60 \mathrm{~cm}^{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { Volume } & =l \times b \times h \\
& =10 \times 5 \times 4 \\
& =200 \mathrm{~m}^{3}
\end{aligned}
$$

CHAPTER 11: NUMERICAL AND GEOMETRICAL PATTERNS

COMPLETE THE PATTERN

Count forward
If you count forward it's $a+$ or x.
To determine what we are counting in, take the $2^{\text {nd }}$ number minus the $1^{\text {st }}$ number. Make sure the $3^{\text {rd }}$ number minus the $2^{\text {nd }}$ number gives the same answer.

Example

Write the following 3 numbers in each row:
$\begin{array}{llll}2 & 7 & 12 & 17\end{array}$
$2^{\text {nd }}-1^{\text {st }}=7-2=5$
$3^{\text {rd }}-2^{\text {nd }}=12-7=5$
It means we are counting in 5 's: $2,7,12,17,22,27,32 \ldots$

Example
Write the following 3 numbers in each row:
102203304405
$2^{\text {nd }}-1^{\text {st }}=203-102=101$
$3^{\text {rd }}-2^{\text {nd }}=304-203=101$
It means we are counting in 101's: 102, 203, 304, 405, 506, 607, 708..

www.wiskundewenners.co.za 0835795369

